BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 43 3296—3297 (1970)

## Electronic Absorption Spectrum of Tris(2,2'-bipyridine)cobalt (I) Complex

## Youkoh Kaizu, Yasuo Torii and Hiroshi Kobayashi

Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo

(Received May 11, 1970)

Very recently electronic absorption spectral studies have appeared on the lower valent tris-(2,2'-bipyridine)-complexes.<sup>1-3)</sup> In these lower valent complexes, 'metal to ligand' charge-transfer bands are observed in the near infrared and visible region. In previous papers,<sup>2,3)</sup> it was shown that the charge-transfer transitions can be identified since they give rise to a different spectral behavior from those of the  $(\pi,\pi^*)$  transition of the coordinating ligand or the  $(d,d^*)$  transition in the central metal ion, when a small perturbation such as methylsubstitution is introduced into the system of bipyridine.

In this note, a small perturbation technique was applied for assignment of the lower wave number absorption bands.<sup>2,3)</sup> Figure 1 shows absorption spectra of the tris-bipyridine complexes of cobalt(I). The absorption bands were observed at 7200, 16400 and 26200 cm<sup>-1</sup>. The 16400 cm<sup>-1</sup> band is the same as the result of qualitative measurement by Waind and Martin,<sup>4)</sup> who overlooked the 7200 and 26200

cm<sup>-1</sup> bands and reported quite different ultraviolet spectrum<sup>5)</sup> from ours. The lowest wave number band observed at 7200 cm<sup>-1</sup> behaves as 'ligand to metal' charge-transfer band upon the dimethylsubstitutions. The band at 7200 cm<sup>-1</sup> is shifted in the order: 4dmbip\*1 (6700 cm<sup>-1</sup>), bipy (7200 cm<sup>-1</sup>), 5dmbip\*1 (7500 cm<sup>-1</sup>). On the contrary, the ultraviolet band is shifted in the order: 5dmbip  $(33200 \text{ cm}^{-1})$ , bipy  $(34200 \text{ cm}^{-1})$ , 4dmbip  $(34300 \text{ cm}^{-1})$ cm<sup>-1</sup>). This indicates that the band observed at ca.  $34000 \text{ cm}^{-1}$  should be assigned to a  $(\pi, \pi^*)$ transition of the coordinating bipyridine. Martin et al. 5) reported the lowest  $(\pi,\pi^*)$  transition of the coordinating bipyridine at 35200 cm<sup>-1</sup>. However, we observed the band at 34200 cm<sup>-1</sup> when the solution of higher concentration was measured in a 0.1 cm quartz cell, otherwise the band appeared at 35300 cm<sup>-1</sup>. The spectrum given by Martin et al. might be apparently shifted due to some contamination of free bipyridine. As a matter of fact, free bipyridine shows a band at 35500 cm<sup>-1</sup>.

We showed that low energy charge-transfer bands are observed when electrons are trapped by the central metal ion upon the reduction of a complex,

<sup>1)</sup> E. König and S. Herzog, *J. Inorg. Nucl. Chem.*, **32**, 585, 601, 612 (1970).

Y. Kaizu, T. Yazaki, Y. Torii and H. Kobayashi, This Bulletin, 43, 2068 (1970).

<sup>3)</sup> I. Fujita, T. Yazaki, Y. Torii and H. Kobayashi, *ibid.*, to be published.

<sup>4)</sup> G. M. Waind and B. Martin, J. Inorg. Nucl. Chem., 8, 551 (1958).

<sup>5)</sup> B. Martin, W. R. McWhinnie and G. M. Waind, *ibid.*, **23**, 207 (1961).

<sup>\*1 4,4&#</sup>x27;-dimethyl- and 5,5'-dimethyl-2,2'-bipyridine are abbreviated to 4dmbip and 5dmbip, respectively.

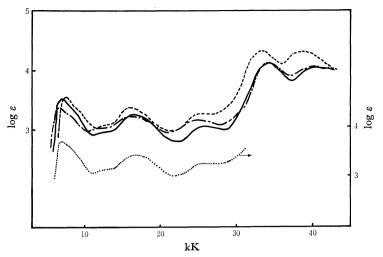



Fig. 1. Absorption spectra of the bipyridine complexes of cobalt(I) in methanol solution.

——: [Co(bipy)<sub>3</sub>]ClO<sub>4</sub>, ——:: [Co-(4dmbip)<sub>3</sub>]ClO<sub>4</sub>, ——:: [Co(5dmbip)<sub>3</sub>]ClO<sub>4</sub>, ——: Co(bipy)<sub>2</sub>ClO<sub>4</sub>. The symbol (→) indicates the right ordinate.

while low energy  $(\pi, \pi^*)$  bands of the coordinating negative ion are observed when electrons are captured by the coordinating ligand.<sup>2)</sup> Since we observed low energy charge-transfer bands, majority population of the electron furnished by reduction is concluded to localize at the central cobalt ion. The oxidation number of cobalt is +1. Since univalent cobalt has eight electrons in d-orbitals, two unpaired electrons are expected under the ligand field of  $D_3$  symmetry. This is in good agreement with our observed magnetic moment 2.53 B.M.

In addition to tris(2,2'-bipyridine) cobalt(I) complex, it is well known that bis(2,2'-bipyridine) cobalt(I) complex exists. The bis-complex shows an intense and diffuse spectrum very similar to that of the tris-complex. From the fact that tris(2,2'-bipyridine) nickel(II) complex, an isoelectronic system of tris(2,2'-bipyridine) cobalt(I) complex, gives rise to  $(d,d^*)$  transitions in the visible region, the low energy absorption band observed in the bis-complex has been assigned to  $(d,d^*)$  transitions by Császár. We are convinced from our data that the bands in the near infrared and visible region should be assigned to 'metal to ligand' charge-transfer transitions.

## Experimental

Tris(2,2'-bipyridine)- and bis(2,2'-bipyridine) cobalt(I) perchlorates were prepared by the same method as given in the literature. (4,6) Tris(4,4'-dimethyl-2,2'-bipyridine)- and tris(5,5'-dimethyl-2,2'-bipyridine)-cobalt(II) perchlorate were prepared by the same method with some modifications. The four compounds are deep blue. Tris(2,2'-bipyridine) cobalt(I) perchlorate we prepared showed a magnetic moment of 2.53 B.M. at room temperature. Waind and Martin, however, reported that the tris-complex was diamagnetic. The bis-complex gave a moment of 2.71 B.M. The results of elemental analysis are shown in Table 1.

Table 1.

| Complex                                    | Analysis Co (%) |       |
|--------------------------------------------|-----------------|-------|
|                                            | Calcd           | Found |
| [Co(bipy) <sub>3</sub> ]ClO <sub>4</sub>   | 9.4             | 9.7   |
| [Co(4dmbip) <sub>3</sub> ]ClO <sub>4</sub> | 8.3             | 8.8   |
| $[Co(5dmbip)_3]ClO_4$                      | 8.3             | 8.5   |
| Co(bipy) <sub>2</sub> ClO <sub>4</sub>     | 12.5            | 12.3  |

Measurement of the electronic absorption spectra of such air-sensitive compounds was described previously.<sup>9)</sup> Spectra were measured using a Shimadzu automaticrecording spectrophotometer Model MPS-50.

<sup>6)</sup> A. A. Vlecek, Nature, 180, 753 (1957).

<sup>7)</sup> J. Császár, Naturwissenschaften, 46, 488 (1959).

<sup>8)</sup> B. Martin and G. M. Waind, Proc. Chem. Soc., 1958, 169.

<sup>9)</sup> Y. Torii, T. Yazaki, Y. Kaizu, S. Murasato and H. Kobayashi, This Bulletin, 42, 2264 (1969).